Exponential Smoothing and the Akaike Information Criterion
نویسندگان
چکیده
Using an innovations state space approach, it has been found that the Akaike information criterion (AIC) works slightly better, on average, than prediction validation on withheld data, for choosing between the various common methods of exponential smoothing for forecasting. There is, however, a puzzle. Should the count of the seed states be incorporated into the penalty term in the AIC formula? We examine arguments for and against this practice in an attempt to find an acceptable resolution of this question.
منابع مشابه
Exponential Smoothing Mod
Applications of exponential smoothing to forecast time series usually rely on three basic methods: simple exponential smoothing, trend corrected exponential smoothing and a seasonal variation thereof. A common approach to select the method appropriate to a particular time series is based on prediction validation on a withheld part of the sample using criteria such as the mean absolute percentag...
متن کاملاستفاده از مدل چندجملهای کسری در تعیین عوامل مرتبط با بقای بیماران مبتلا به سرطان معده
Background & Objectives: Cox regression model is one of the statistical methods in survival analysis. The use of smoothing techniques in Cox model makes the more accurate estimates for the parameters. Fractional polynomial is one of these techniques in Cox model. The aim of this study was to assess the effects of prognostic factors on survival of patients with gastric cancer using the fractiona...
متن کاملAn Assessment of Renewable Energy in Bangladesh through ARIMA, Holt’s, ARCH- GARCH Models
Forecasting of the Renewable Energy plays a major role in optimal decision formula for government and industrial sector in Bangladesh. This research is based on time series modeling with special application to solar energy data for Dhaka city. Three families of time series models namely, the autoregressive integrated moving average models, Holt’s linear exponential smoothing, and the autoregres...
متن کاملRobust Complexity Criteria for Nonlinear Regression in Narx Models
Many different methods have been proposed to construct a smooth regression function, including local polynomial estimators, kernel estimators, smoothing splines and LS-SVM estimators. Each of these estimators use hyperparameters. In this paper a robust version for general cost functions based on the Akaike information criterion is proposed.
متن کاملAutomatic Selection of Parameters in Spline Regression via Kullback-Leibler Information
Based on Kullback-Leibler information we propose a data-driven selector, called GAIC (c) , for choosing parameters of regression splines in nonparametric regression via a stepwise forward/backward knot placement and deletion strategy 1]. This criterion uniies the commonly used information criteria and includes the Akaike information criterion (AIC) 2] and the corrected Akaike information criter...
متن کامل